Monitoring Uranium Mining and Milling using Commercial Observation Satellites

Lalitha Sundaresan¹, Chandrashekar Srinivasan¹ and Bhupendra Jasani²

1. Visiting Professors, International Strategic and Security Studies Programme, National Institute for Advanced Studies (NIAS), Bangalore, India
2. Department of War Studies, King’s College London, London, UK

E-mail: sundaresan.lalitha@gmail.com, chandrashekar.schandra@gmail.com, bhupendra.jasani@kcl.ac.uk

Abstract:
As several states have signed the Additional Protocol to their Safeguards Agreements with the International Atomic Energy Agency (IAEA), they will need to declare their nuclear activities in considerable detail, including their operational and shut down uranium mines. This could significantly increase the burden on the resources of the IAEA in carrying out its safeguards procedures. The IAEA could use space-based high-resolution panchromatic, multi-spectral and hyper-spectral sensors to verify some aspects of uranium mining and milling. Such techniques could reduce the overall costs. The availability of such data cost free on the Google Earth web site and commercially from various imagery providers makes it possible for analysts to make assessments concerning the nuclear fuel cycle activities of various countries of interest. The mining of uranium and its conversion through a milling process into U₃O₈ (yellowcake) is the first step of a complex conversion cycle that determines how the mined material will be used.

Our study discusses the possible use of satellite imagery for identifying and monitoring uranium mining and milling activities. In the study an attempt is made to answer the following questions:

1. Can we identify uranium mines using openly available satellite imagery?
2. Can we use various steps in uranium milling operations to identify such mills across the world?
3. Are there other extraction processes that share similar features with those for uranium? If so, then are there any special features present or absent in the sequence of operations for their extraction that helps an analyst separate a uranium operation from other operations that share some or all of the features present in the extraction of uranium?

Based on empirically derived observables and signatures from satellite imagery for typical uranium extraction operations we have derived a decision making algorithm for determining whether a particular facility can be categorized as a uranium mill or whether it should be categorized as some other facility.

The method has been used to look at some copper mills across several locations and have shown that the decision making algorithm does help us to separate out a uranium mill from a copper mill.

Keywords: Uranium mills, Fuel cycle, Spatial features, Uranium mines, International Safeguards, Satellite Images.
1. Introduction

The need to prevent nuclear material proliferation has been of serious concern for the last several decades. In fact the setting up of the International Atomic Energy agency (IAEA) was primarily to deter nation states from pursuing nuclear weapon programs. The States periodically declare all their activities according to the protocol agreed with IAEA, specifically on nuclear material inventory control, containment and surveillance at facilities. Verification of these declared activities is a major task and with the Additional Protocol the verification has become more difficult; newer methods and technologies are always useful to strengthen the verification methods.

Verification measures include on-site inspections, visits, and ongoing monitoring and evaluation. Under the Additional protocols agreement, the signatory states are required to provide IAEA inspectors access to all parts of the nuclear fuel cycle – uranium mines, processing facilities, fuel fabrication, and enrichment plants and nuclear waste sites – as well as any other location where nuclear materials may be present.

This has vastly increased the amount and type of information that states will have to provide to the IAEA. At the same time, the burden of verification has also vastly multiplied as far as IAEA inspectors are concerned. Given the security or the lack of it in the world in the recent years, IAEA is bound to find itself in a situation where physical verification of the declared nuclear facilities will become difficult, not to mention the undeclared facilities particularly in the early part of the nuclear fuel cycle which is uranium mining and milling. It is in this context that the role of satellite images become significant in identifying the nuclear fuel facilities.

There have been several studies that have been carried out to assess the usefulness of high resolution satellite images for verification of safeguard treaties between countries [1]. These efforts have tried to identify key features of a nuclear facility and seek to uniquely identify them from a satellite imagery.

It is well known that satellite images are useful to identify and monitor some of the nuclear facilities [2]. IAEA has been using satellite images as a tool for safeguard purposes routinely [3]. With the Additional Protocol, IAEA inspection involves monitoring the early part of the nuclear fuel cycle which includes uranium mining and milling. However, satellite images have not been used in a major way for looking at existing or newly created mining or milling operations for assessing whether they are used for the production of Uranium.

The present paper is an effort to demonstrate the possible use of commonly available satellite imagery for identifying and monitoring Uranium mining and milling activities. Towards this it seeks to answer the following questions:

- Can we use the various steps in uranium milling operations to identify such mills across the world using satellite imagery available in public domain particularly Google Earth images?
- Are there other extraction processes that share similar features with uranium extraction processes? If so, how do we distinguish uranium mills from these mills in a satellite image?
- How can we make an assessment of the uranium production capacity of a mill identified in a satellite image?

2. Past Work

One of the earliest studies that attempted to demonstrate the use of satellite images for identifying uranium mines and mills was by Jasani et al. [4]. The steps involved in the conversion of uranium ore to yellow cake was used to develop a set of keys to identify a uranium mill is a high resolution hyper-spectral satellite image. Taking the Ranger mine and mill as an example the study demonstrated that the potential observables which are present in the uranium mining and milling operation, but not in copper mining and milling, include the discriminator station, pyrolusite (manganese dioxide) which is used as an oxidant in leaching,
the pregnant uranium leach liquor produced in the sulfuric acid leaching process, the concentrated uranium strip solution generated from solvent extraction, and finally the yellowcake produced from the precipitation and drying steps. The study also pointed out that most of these features do not have unique spectral signatures and their identification is further complicated by their small spatial extents.

Using the Ranger mine and mill again as an example, researchers at the Sandia National Laboratory analysed the potential use of multi-spectral as well as hyper spectral data from a number of remote sensing satellites to separate out any unique features of a typical Uranium mining and milling operation [5]. Apart from magnesium chlorite the only other identifiable signature came from the Sulphur heaps at the Ranger site which is used to manufacture Sulphuric acid for the acid leaching process at Ranger. The study concluded that hyperspectral data could not distinguish between uranium processes from other milling processes such as that of copper, zinc, vanadium, phosphorous and Rare Earths. Further the study pointed out that while high spatial resolution satellite systems such as Quickbird lack sufficient spectral resolution to uniquely identify many materials, spatial information provided by these systems could complement information obtained from high spectral resolution systems such as Hyperion. A unique aspect of this study however, was the creation of a decision tree that linked each step in the milling operation at Ranger to similar processes used in the extraction of other materials of commercial and strategic importance.

Another notable study demonstrated the use of satellite images for IAEA to verify the reports submitted by the concerned country on the operational schedules of a uranium mine and mill [6]. An important conclusion that emerges from these studies is that it is difficult to identify a uranium mill using only spectral signatures be it multi spectral or hyperspectral satellite images.

3. Our Approach

We identify a uranium mill using a novel approach which contrasts with the earlier studies. A set of keys for identification of a uranium mill is developed based on the spatial features of the equipments used in the milling operations. This is achieved by interpreting the GE images of a large number of commercial uranium mills across the world.

A comprehensive understanding of the spatial signatures of the uranium operations at each site is built up using the process flow sheets of the mill along with publicly available information about the mill. Together with the Google Earth (GE) image of the mill, the keys for identification is developed. The most commonly occurring features in the sample sets along with their signatures are then used to decide whether a mill seen on a satellite image is a uranium mill or not.

4. Uranium Milling Process

The process of uranium extraction is very well known [7]. However, to integrate it with our study, a schematic of a typical process for the extraction of uranium from its ore is shown in Figure 1. The associated equipments / reagents with each of these steps are also shown in the figure. Our objective is to determine which of these equipments are unique to a uranium milling operation and visible and identifiable in a satellite image. For the purpose of this study we have not considered those mills that use heap leaching as the only method for leaching. The reason for this omission is that the process steps involved in this case will differ slightly and it may not be possible to uniquely identify such mills in a satellite image.

We selected 11 uranium milling operations and our sample set is shown in Table 1.
Figure 1 A Simplified Overview of the Steps involved in

<table>
<thead>
<tr>
<th>Country</th>
<th>Mill Name</th>
<th>Location (Lat / Long)</th>
<th>Owner</th>
<th>Start Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>Sweet Water</td>
<td>42 03 N 107 54 W</td>
<td>Shut Down</td>
<td>1981</td>
</tr>
<tr>
<td>Canada</td>
<td>Rabbit Lake</td>
<td>58 15 N 103 40 W</td>
<td>CAMECO</td>
<td>1975</td>
</tr>
<tr>
<td>Australia</td>
<td>Ranger</td>
<td>12 41 S 132 55 E</td>
<td>ERA</td>
<td>1981</td>
</tr>
<tr>
<td>Canada</td>
<td>Mclean Lake</td>
<td>58 21 N 103 50 W</td>
<td>Areva</td>
<td>1999</td>
</tr>
<tr>
<td>Canada</td>
<td>Key Lake</td>
<td>57 13 N 105 40 W</td>
<td>CAMECO</td>
<td>1983</td>
</tr>
<tr>
<td>Niger</td>
<td>Arlit</td>
<td>18 47 N 7 21 E</td>
<td>Areva</td>
<td>1970</td>
</tr>
<tr>
<td>Namibia</td>
<td>Rossing</td>
<td>22 28 S 15 03 E</td>
<td>Rio Tinto</td>
<td>1976</td>
</tr>
<tr>
<td>Namibia</td>
<td>Langer</td>
<td>22 49 S 15 20 E</td>
<td>Paladin</td>
<td>2006</td>
</tr>
<tr>
<td>Russia</td>
<td>Krasnokamensk</td>
<td>50 06 N 118 11 E</td>
<td>Argun</td>
<td>1968</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>Rozna</td>
<td>49 30 N 16 14 E</td>
<td>DIAMO</td>
<td>1958</td>
</tr>
<tr>
<td>Romania</td>
<td>Feldiora</td>
<td>45 50 N 25 30E</td>
<td>State Owned</td>
<td>1978</td>
</tr>
</tbody>
</table>

Table 1 Sample set of Uranium Mills
The imagery available on GE for each of these mills were studied in detail along with other publicly available information. The uranium mill features observable in a satellite image for the sample sites is summarised in Table 2.

<table>
<thead>
<tr>
<th>Mill</th>
<th>Acid Plant</th>
<th>Sulphur store</th>
<th>Acid/Alkali store</th>
<th>Hot Leach</th>
<th>Leach tanks</th>
<th>CCD</th>
<th>SX</th>
<th>IX Column</th>
<th>NH3 tanks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweet Water</td>
<td>NA</td>
<td>NA</td>
<td>S</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>Building ?</td>
<td>NA</td>
<td>S</td>
</tr>
<tr>
<td>Rabbit Lake</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>NS</td>
<td>S?</td>
<td>S</td>
<td>Building ?</td>
<td>NA</td>
<td>S</td>
</tr>
<tr>
<td>Ranger</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>NS</td>
<td>S</td>
<td>S</td>
<td>Pattern seen</td>
<td>NA</td>
<td>S</td>
</tr>
<tr>
<td>Mclean Lake</td>
<td>S</td>
<td>S</td>
<td>NS</td>
<td>NS</td>
<td>S</td>
<td>Building ?</td>
<td>NA</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Key Lake</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>Smoke</td>
<td>NS</td>
<td>S</td>
<td>Building ?</td>
<td>NA</td>
<td>S</td>
</tr>
<tr>
<td>Arlit</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>NS</td>
<td>S</td>
<td>Pattern Seen</td>
<td>NA</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Rossing</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>NS</td>
<td>S</td>
<td>Pattern Seen</td>
<td>S</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Langer Heinrich</td>
<td>NA</td>
<td>NA</td>
<td>S</td>
<td>Heat Exch.</td>
<td>S</td>
<td>S</td>
<td>NA</td>
<td>S</td>
<td>NA</td>
</tr>
<tr>
<td>Krasnokamensk</td>
<td>S</td>
<td>NS</td>
<td>S</td>
<td>Chimney Seen</td>
<td>Autoclave</td>
<td>S</td>
<td>NA</td>
<td>S</td>
<td>NS</td>
</tr>
<tr>
<td>Rozna</td>
<td>NA</td>
<td>NA</td>
<td>S</td>
<td>Smoke</td>
<td>NS</td>
<td>S</td>
<td>NA</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Feldiora</td>
<td>NA</td>
<td>NA</td>
<td>S</td>
<td>Chimney Seen</td>
<td>Autoclave</td>
<td>S</td>
<td>NA</td>
<td>S</td>
<td>NS</td>
</tr>
</tbody>
</table>

Table 2 Uranium Mill Features Observable in a Satellite Image

S - Seen, NS - Not Seen, NA – Not Applicable

5. Observations in a satellite imagery of a uranium mill

Though crushing, grinding and slurry preparation facilities are identifiable in most of the imageries they do not offer any special features associated with only a Uranium Milling operation.

Radiometric sorters are used in many Uranium mills to improve the ore quality. However they cannot be uniquely identified in a satellite image.

The most commonly visible feature in the satellite image is the Counter Current Decantation (CCD) unit, used in the solid / liquid separation process. Figure 2 shows some typical CCDs of some of the mills. In all the cases except the Sweet Water mill, this feature is easily identifiable. The sweet water mill was closed down in 1984 and according to the reports available, the CCD is housed inside a building.
There are several features associated with the leaching process. Some feature or the other are seen in all the mills. Of the 11 mills Langer Heinrich, Rozna and Feldiora use alkaline leaching, while the other mills use acid leaching. Since alkaline leaching involves higher temperatures; one can look for evidence of chimney, heat exchangers or even smoke. Additionally in the case of acid leaching one can see either the acid plants or the leach tanks and some times the acid storage tanks close to the leaching facility. Figure 3 shows shows typical leach tanks and leaching sections of some of the mills in our sample.

Unlike the CCDs, the leaching facility is difficult to identify and requires knowledge of the process being employed in the mill. However, we do know that the leaching operation follows the ore preparation step and is followed by separation and therefore the sequence of operation helps to identify some of the leaching features.
The next feature of interest are the equipments associated with the process of concentration and purification. In most mills this is done using either the solvent extraction (SX) columns or the ion exchange (IX) process. Occasionally a combination of both may be used. The SX columns are housed inside a building and thus not readily identifiable. In our sample mill sites we, however noted that the SX columns are housed inside a sequence of identical buildings and linked to these are the storage tanks containing the solvents used in the SX process. (Figure 4). The IX columns are usually left in the open and are visible in the satellite image. (Figure 5).

The features associated with precipitation, drying and calcining are not uniquely identifiable in a satellite image. In most cases they have to be identified indirectly by the presence of containers holding solvents and reagents used for this purpose. Proximity to the SX or IX facilities of such features is another aspect that we can rely on to identify this facility. In some of the mills where ammonia is used, the ammonia cylinders are seen clearly in the satellite image.

To summarise the procedure for identifying a uranium mill from a GE image, we first identify the CCD circuit; then try to locate the leaching facility upstream. If the CCD process is followed by a SX or IX facility, we could conclude with high level of confidence that the facility is a uranium mill.

This approach has certain limitations because many other mineral extraction processes are very similar to the uranium extraction process. For instance the process steps of copper, zinc and vanadium are very similar to Uranium. Of these it is most difficult to discriminate copper and uranium extraction processes spectrally in a satellite image.

By identifying spatial features that are unique to copper mills, we will be able to differentiate a uranium mill from a copper mill.
6. Copper Extraction Process and Observables in a satellite image

The major steps involved in a copper extraction process is shown schematically in Figure 6.

A major difference between copper and uranium is the scale of operation. Invariably due to economic considerations, the copper processing facility will be several times larger than the uranium operation.

Copper occurs mostly in the Sulphide or Oxide forms. While the crushing and grinding steps are common to all extraction processes, the process steps in the case of sulphide ore is different from that of the oxide ore. This is shown in the Figure 6.

![Figure 6 A Simplified Diagram showing the Copper Extraction Process Steps](image)

The sulphide ore goes through a froth flotation process after the initial crushing and grinding which concentrates the copper part. The froth from the flotation process contains the bulk of the copper. The froth is dried and then sent directly to a smelter. The smelter may be located at the mill site or may be located elsewhere. The smelter converts the copper concentrate into blister copper which is further refined to produce anodic copper and finally goes through an electro winning step to produce high purity copper.

The tailings from the froth flotation may also contain copper which could be recovered. These tailings are leached with sulphuric acid, passed through a series of CCDs followed by a solvent extraction step. The copper solution that comes out of the solvent extraction step is then sent to an Electrowinning Facility for the extraction of copper.

Thus a mill which processes low grade copper ore or a part of a copper mill which processes the tailings from a froth flotation process will look similar to a uranium mill. It will have the features such as CCD circuits, SX units in addition to the acid leach facilities that we have seen in a uranium mill.
However, the differentiating factor for the extraction of copper from flotation tailings is that after solvent extraction it goes to an electro winning facility instead of a precipitation facility. Since such an electro winning facility has a typical signature evidence of this step in a satellite image can be used to separate out a Uranium mill from a copper mill.

Figure 7 shows a typical electrowinning facility as seen in a satellite image. In the figure the long building(A) is an electrowinning facility which can be easily identified and this is co located with the solvent extraction facility in the foreground (B).

![Figure 7 GE image of Nchanga Copper mill (A – Electrowinning, B – SX)](image)

Copper occurring in the oxide form is typically leached using sulphuric acid after suitable crushing and grinding. Following concentration through a solvent extraction process the solution containing copper is sent to an electro-winning facility. Depending on the concentration of the ore the leaching step may also be followed by a CCD sequence prior to solvent extraction and electro-winning.

Again the differentiating step between copper and uranium is the electrowinning facility.

7. Key Differentiators for a Uranium Mill

The sequence of Acid or Alkaline leaching – CCD – solvent extraction – precipitation is typical of all Uranium mills.

The CCD unit of these mills is the most amenable to observation from satellite. Though its absence does not completely rule out Uranium, its presence is a robust indicator of a potential Uranium milling operation.

The leaching step is the next most visible feature in a satellite image. Both direct and indirect signatures are available to make inferences about this step. The absence of a leaching process rules out a Uranium mill.

Thus the sequence of CCD preceded by a leaching step provides a baseline signature for a possible Uranium Mill.
In many cases solvent extraction facilities have features such as repetitive identical buildings close to the CCDs that can be identified through satellite imagery.

Ion exchange facilities can be seen in a satellite image unless in rare cases they are housed inside buildings.

In the case of precipitation, storage tanks for the various chemicals and their location in the flow of material provide some indications. Ammonia tanks used in many cases for the precipitation of Uranium are often identifiable in a satellite image. Along with a CCD and a leaching step Ammonia tanks provide a firm indication of a Uranium extraction operation.

Since the solvent extraction or ion exchange or even the precipitation steps in a Uranium mill do not provide very robust signatures one way to enhance the reliability of our classification is to eliminate other materials that share the Leaching - CCD - Solvent Extraction sequence.

Copper extraction mills that may in some cases share a similar Leaching – CCD – Solvent extraction sequence can be eliminated by the presence of Electro-winning, Smelting and froth flotation facilities in such extraction processes. All of these have clear signatures and can be identified easily in a satellite image. Through such elimination of various alternatives that share the leaching step and in some cases the CCDs as well as solvent extraction steps, we can increase the probability that the mill we are seeing is indeed a Uranium Mill.

8. Assessment of the Production Capacity of a Uranium mill from a satellite image

Using the observables from the satellite image such as the number of CCD circuits, the diameter of the CCD in a mill along with the average ore grade, we have been able to arrive at an empirical equation to estimate the production capacity of the mill. The equation was derived linking the nominal production capacity data of the sample mills in our study with the measurements made on the satellite images of these mills.

<table>
<thead>
<tr>
<th>Country</th>
<th>Mill Name</th>
<th>Ore Grade (% U3O8) G</th>
<th>CCD Nos. N</th>
<th>CCD Diameter (meters) D</th>
<th>Nominal Production Capacity (tonnes) P</th>
<th>Predicted Capacity (Tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>Sweet Water</td>
<td>0.048</td>
<td>6</td>
<td>9.752782825</td>
<td>350</td>
<td>401.41</td>
</tr>
<tr>
<td>Canada</td>
<td>Rabbit Lake</td>
<td>0.79</td>
<td>4</td>
<td>30.00530739</td>
<td>4615</td>
<td>3467.43</td>
</tr>
<tr>
<td>Australia</td>
<td>Ranger</td>
<td>0.13</td>
<td>8</td>
<td>34.65020841</td>
<td>4660</td>
<td>3463.12</td>
</tr>
<tr>
<td>Canada</td>
<td>Mclean Lake</td>
<td>1.22</td>
<td>8</td>
<td>12.85019021</td>
<td>3077</td>
<td>3166.65</td>
</tr>
<tr>
<td>Canada</td>
<td>Key Lake</td>
<td>3.4</td>
<td>8</td>
<td>20.00353826</td>
<td>7200</td>
<td>8320.77</td>
</tr>
<tr>
<td>Niger</td>
<td>Arlit</td>
<td>0.3</td>
<td>6</td>
<td>23.00650697</td>
<td>2330</td>
<td>2434.56</td>
</tr>
<tr>
<td>Namibia</td>
<td>Rossing</td>
<td>0.03</td>
<td>10</td>
<td>56.32028518</td>
<td>4000</td>
<td>3781.54</td>
</tr>
<tr>
<td>Namibia</td>
<td>Langer</td>
<td>0.05</td>
<td>7</td>
<td>23.15041609</td>
<td>1425</td>
<td>1251.39</td>
</tr>
<tr>
<td>Russia</td>
<td>Krasnokamensk</td>
<td>0.18</td>
<td>6</td>
<td>52.01257401</td>
<td>3000</td>
<td>4817.18</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>Rozna</td>
<td>0.378</td>
<td>5</td>
<td>24.98407136</td>
<td>3200</td>
<td>2493.75</td>
</tr>
<tr>
<td>Romania</td>
<td>Feldiora</td>
<td>0.12</td>
<td>4</td>
<td>28.00705098</td>
<td>1120</td>
<td>1354.75</td>
</tr>
</tbody>
</table>

Table 3 Data from the Sampled Mills
(All data taken from Uranium 2009: Resources, Production and Demand, A joint Report by OECD NE Agency and IAEA, 2010, Also called the Red Book except Russia)
The equation is in exponential form:

\[P = k \cdot G^a \cdot N^b \cdot A^c \]

Expressed in log form and estimating the coefficients k, a, b and c using the sample data gives,

\[\ln P = 3.112976 + 0.457613\ln G + 0.956309\ln N + 0.561587\ln A \]

Where,

- \(k \) = Constant
- \(G \) = Ore grade in percentage
- \(N \) = Number of CCDs
- \(A \) = Area of the CCD in meter square.

The data used for this purpose is shown in Table 3. The nominal capacity for the mills is taken from the Red Book except in the case of the Russian Federation. The estimated production values for the mills from the empirical equation are also shown in the table for comparison. The results are reasonably good except for the Russian Mill. Agencies such as IAEA having access to more accurate data will be able to improve upon these estimates.

This estimation process is applied to an Indian mill at Turamdih, Jharkhand. This mill uses acid leaching and ion exchange. (See Figure 8). The mill processes uranium ore of grade 0.034%. In the satellite image we can identify 3 CCDs of diameter 13m.

Using the empirical equation, we estimate the production capacity of the mill to be 244 tonnes which compares well with the nominal capacity of 190 tonnes.

9. Conclusion

This paper demonstrates how publicly available images from Google Earth can be used for the purpose identifying a uranium mill.

It is possible to identify a uranium mill in a satellite image using the spatial features of the equipments used in the extraction process.

It is also possible to distinguish a uranium mill from a copper mill since the spatial features associated with the copper mill are different from that of the uranium mill. Particularly the presence of the electrowinning facility in a copper mill enables us to differentiate it from a uranium mill.

An empirical equation is provided to estimate the production capacity of a uranium mill identified on a satellite image. The number of CCDs, the diameter of the CCD and the ore grade are used to make this estimate.
Acknowledgement

The authors would like to thank their colleagues R. Nagappa and N. Ramani for many useful suggestions while doing this study.

References

3. IAEA Information Series, *Tools for Inspection*, Division of Public Information, 04-46161/F S Series 3/03/E.

